Cargando…

Phytoliths in Taxonomy of Phylogenetic Domains of Plants

We discuss, from the aspect of phylogeny, the interrelationships of the phytolith types in plants from the main taxonomical groups (algae, lichens, horsetails, gymnosperms, and floral plants) with homologues of known proteins of biomineralization. Phytolith morphotypes in various phylogenetic plant...

Descripción completa

Detalles Bibliográficos
Autores principales: Golokhvast, Kirill S., Seryodkin, Ivan V., Chaika, Vladimir V., Zakharenko, Alexander M., Pamirsky, Igor E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163427/
https://www.ncbi.nlm.nih.gov/pubmed/25243171
http://dx.doi.org/10.1155/2014/648326
Descripción
Sumario:We discuss, from the aspect of phylogeny, the interrelationships of the phytolith types in plants from the main taxonomical groups (algae, lichens, horsetails, gymnosperms, and floral plants) with homologues of known proteins of biomineralization. Phytolith morphotypes in various phylogenetic plant domains have different shapes. We found that, in ancient types of plants (algae, horsetails, and gymnosperms), there are fewer different phytolith morphotypes compared to more modern plants (floral plants). The phytolith morphotypes in primitive plants are generally larger than the morphotypes in more highly organized plants. We found that the irregular ruminate and irregular smooth morphotypes are the two most frequently encountered phytolith morphotypes in the tested plants (from algae to floral plants). These two morphotypes probably have a universal role. Silacidins, silicon transporters, silicateins, silaffins, and silicase homologues are often found in the major taxonomic groups of plants. Red algae had the smallest number of homologues of the biomineralization proteins (70–80), Monocotyledonous: 142, Coniferous: 166, Mosses: 227, and Dicotyledones: 336.