Cargando…
On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexi...
Autores principales: | Kusne, Aaron Gilad, Gao, Tieren, Mehta, Apurva, Ke, Liqin, Nguyen, Manh Cuong, Ho, Kai-Ming, Antropov, Vladimir, Wang, Cai-Zhuang, Kramer, Matthew J., Long, Christian, Takeuchi, Ichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163667/ https://www.ncbi.nlm.nih.gov/pubmed/25220062 http://dx.doi.org/10.1038/srep06367 |
Ejemplares similares
-
Combinatorial study of Fe-Co-V hard magnetic thin films
por: Fackler, Sean W., et al.
Publicado: (2017) -
On-the-fly closed-loop materials discovery via Bayesian active learning
por: Kusne, A. Gilad, et al.
Publicado: (2020) -
A semi-supervised deep-learning approach for automatic crystal structure classification
por: Lolla, Satvik, et al.
Publicado: (2022) -
Rare earth permanent magnets
por: Nowick, AS
Publicado: (2012) -
Radiation effects on rare-earth cobalt permanent magnets
por: Coninckx, F, et al.
Publicado: (1983)