Cargando…

Cup-Shaped Superparamagnetic Hemispheres for Size-Selective Cell Filtration

We propose a new method of size separation of cells exploiting precisely size-controlled hemispherical superparamagnetic microparticles. A three-layered structure of a 2-nm nickel layer inserted between 15-nm silicon dioxide layers was formed on polystyrene cast spheres by vapor deposition. The poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyonchol, Terazono, Hideyuki, Takei, Hiroyuki, Yasuda, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163672/
https://www.ncbi.nlm.nih.gov/pubmed/25219418
http://dx.doi.org/10.1038/srep06362
Descripción
Sumario:We propose a new method of size separation of cells exploiting precisely size-controlled hemispherical superparamagnetic microparticles. A three-layered structure of a 2-nm nickel layer inserted between 15-nm silicon dioxide layers was formed on polystyrene cast spheres by vapor deposition. The polystyrene was then removed by burning and the hemispherical superparamagnetic microparticles, “magcups”, were obtained. The standard target cells (CCRF-CEM, 12 ± 2 μm) were mixed with a set of different sizes of the fabricated magcups, and we confirmed that the cells were captured in the magcups having cavities larger than 15 μm in diameter, and then gathered by magnetic force. The collected cells were grown in a culture medium without any damage. The results suggest that this method is quick, simple and non-invasive size separation of target cells.