Cargando…
Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE(2) production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity
Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE(2) in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE(2) upregulation, IκBα degradation, NFκ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Biochemistry and Molecular Biology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163845/ https://www.ncbi.nlm.nih.gov/pubmed/24209633 http://dx.doi.org/10.5483/BMBRep.2014.47.1.089 |
Sumario: | Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE(2) in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE(2) upregulation, IκBα degradation, NFκB activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and PGE(2) levels, but the PTP inhibitor peroxovanadium (POV) significantly increased the COX-2 mRNA and PGE(2) levels. Furthermore, the PTP inhibitor mitigated the inhibitory effect of aspirin on COX-2 and PGE(2) upregulation and NF-κB activation, whereas the PKC inhibitor enhanced the inhibitory effects of aspirin on the production of COX-2 and PGE(2). Our data indicate a novel mechanism by which aspirin acts as a potent anti-inflammatory agent in alveolus macrophages and ALI. [BMB Reports 2014; 47(1): 45-50] |
---|