Cargando…
Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections
Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are avai...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164034/ https://www.ncbi.nlm.nih.gov/pubmed/25309338 http://dx.doi.org/10.3389/fnana.2014.00091 |
_version_ | 1782334903952605184 |
---|---|
author | Pyka, Martin Klatt, Sebastian Cheng, Sen |
author_facet | Pyka, Martin Klatt, Sebastian Cheng, Sen |
author_sort | Pyka, Martin |
collection | PubMed |
description | Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM), to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: (i) the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, (ii) the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort. |
format | Online Article Text |
id | pubmed-4164034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41640342014-10-10 Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections Pyka, Martin Klatt, Sebastian Cheng, Sen Front Neuroanat Neuroscience Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM), to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: (i) the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, (ii) the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort. Frontiers Media S.A. 2014-09-15 /pmc/articles/PMC4164034/ /pubmed/25309338 http://dx.doi.org/10.3389/fnana.2014.00091 Text en Copyright © 2014 Pyka, Klatt and Cheng. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Pyka, Martin Klatt, Sebastian Cheng, Sen Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title | Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title_full | Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title_fullStr | Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title_full_unstemmed | Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title_short | Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections |
title_sort | parametric anatomical modeling: a method for modeling the anatomical layout of neurons and their projections |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164034/ https://www.ncbi.nlm.nih.gov/pubmed/25309338 http://dx.doi.org/10.3389/fnana.2014.00091 |
work_keys_str_mv | AT pykamartin parametricanatomicalmodelingamethodformodelingtheanatomicallayoutofneuronsandtheirprojections AT klattsebastian parametricanatomicalmodelingamethodformodelingtheanatomicallayoutofneuronsandtheirprojections AT chengsen parametricanatomicalmodelingamethodformodelingtheanatomicallayoutofneuronsandtheirprojections |