Cargando…

A genetic and computational approach to structurally classify neuronal types

The importance of cell types in understanding brain function is widely appreciated but only a tiny fraction of neuronal diversity has been catalogued. Here, we exploit recent progress in genetic definition of cell types in an objective structural approach to neuronal classification. The approach is...

Descripción completa

Detalles Bibliográficos
Autores principales: Sümbül, Uygar, Song, Sen, McCulloch, Kyle, Becker, Michael, Lin, Bin, Sanes, Joshua R., Masland, Richard H., Seung, H. Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164236/
https://www.ncbi.nlm.nih.gov/pubmed/24662602
http://dx.doi.org/10.1038/ncomms4512
Descripción
Sumario:The importance of cell types in understanding brain function is widely appreciated but only a tiny fraction of neuronal diversity has been catalogued. Here, we exploit recent progress in genetic definition of cell types in an objective structural approach to neuronal classification. The approach is based on highly accurate quantification of dendritic arbor position relative to neurites of other cells. We test the method on a population of 363 mouse retinal ganglion cells. For each cell, we determine the spatial distribution of the dendritic arbors, or “arbor density” with reference to arbors of an abundant, well-defined interneuronal type. The arbor densities are sorted into a number of clusters that is set by comparison with several molecularly defined cell types. The algorithm reproduces the genetic classes that are pure types, and detects six newly clustered cell types that await genetic definition.