Cargando…

Camellia sinensis (L.) Kuntze Extract Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Albino Rats

The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE) in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with...

Descripción completa

Detalles Bibliográficos
Autores principales: Lodhi, Poonam, Tandan, Neeraj, Singh, Neera, Kumar, Divyansh, Kumar, Monu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164262/
https://www.ncbi.nlm.nih.gov/pubmed/25254057
http://dx.doi.org/10.1155/2014/787153
Descripción
Sumario:The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE) in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with two doses (5 mg/kg bw and 10 mg/kg bw) of AQGTE. Ethanol administration caused a significant increase in the levels of plasma and serum enzymatic markers, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), and nonenzymatic markers (cholesterol and triglycerides), lipid peroxidation contents, malondialdehyde (MDA), and glutathione-S-transferase (GST), and decreased the activities of total proteins, albumin, and cellular antioxidant defense enzymes such as superoxide dismutase (SOD). The elevation and reduction in these biochemical enzymes caused the damage in hepatocytes histologically due to the high production of ROS, which retards the antioxidant defense capacity of cell. AQGTE was capable of recovering the level of these markers and the damaged hepatocytes to their normal structures. These results support the suggestion that AQGTE was able to enhance hepatoprotective and antioxidant effects in vivo against ethanol-induced toxicity.