Cargando…
Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms
Recently, predicting proteins three-dimensional (3D) structure from its sequence information has made a significant progress due to the advances in computational techniques and the growth of experimental structures. However, selecting good models from a structural model pool is an important and chal...
Autores principales: | Manavalan, Balachandran, Lee, Juyong, Lee, Jooyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164442/ https://www.ncbi.nlm.nih.gov/pubmed/25222008 http://dx.doi.org/10.1371/journal.pone.0106542 |
Ejemplares similares
-
DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
PFDB: A standardized protein folding database with temperature correction
por: Manavalan, Balachandran, et al.
Publicado: (2019) -
Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest
por: Lee, Juyong, et al.
Publicado: (2015) -
Hidden Information Revealed by Optimal Community Structure from a Protein-Complex Bipartite Network Improves Protein Function Prediction
por: Lee, Juyong, et al.
Publicado: (2013)