Cargando…

Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover

The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in de...

Descripción completa

Detalles Bibliográficos
Autores principales: Parreiras, Lucas S., Breuer, Rebecca J., Avanasi Narasimhan, Ragothaman, Higbee, Alan J., La Reau, Alex, Tremaine, Mary, Qin, Li, Willis, Laura B., Bice, Benjamin D., Bonfert, Brandi L., Pinhancos, Rebeca C., Balloon, Allison J., Uppugundla, Nirmal, Liu, Tongjun, Li, Chenlin, Tanjore, Deepti, Ong, Irene M., Li, Haibo, Pohlmann, Edward L., Serate, Jose, Withers, Sydnor T., Simmons, Blake A., Hodge, David B., Westphall, Michael S., Coon, Joshua J., Dale, Bruce E., Balan, Venkatesh, Keating, David H., Zhang, Yaoping, Landick, Robert, Gasch, Audrey P., Sato, Trey K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164640/
https://www.ncbi.nlm.nih.gov/pubmed/25222864
http://dx.doi.org/10.1371/journal.pone.0107499
_version_ 1782334978100559872
author Parreiras, Lucas S.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
Higbee, Alan J.
La Reau, Alex
Tremaine, Mary
Qin, Li
Willis, Laura B.
Bice, Benjamin D.
Bonfert, Brandi L.
Pinhancos, Rebeca C.
Balloon, Allison J.
Uppugundla, Nirmal
Liu, Tongjun
Li, Chenlin
Tanjore, Deepti
Ong, Irene M.
Li, Haibo
Pohlmann, Edward L.
Serate, Jose
Withers, Sydnor T.
Simmons, Blake A.
Hodge, David B.
Westphall, Michael S.
Coon, Joshua J.
Dale, Bruce E.
Balan, Venkatesh
Keating, David H.
Zhang, Yaoping
Landick, Robert
Gasch, Audrey P.
Sato, Trey K.
author_facet Parreiras, Lucas S.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
Higbee, Alan J.
La Reau, Alex
Tremaine, Mary
Qin, Li
Willis, Laura B.
Bice, Benjamin D.
Bonfert, Brandi L.
Pinhancos, Rebeca C.
Balloon, Allison J.
Uppugundla, Nirmal
Liu, Tongjun
Li, Chenlin
Tanjore, Deepti
Ong, Irene M.
Li, Haibo
Pohlmann, Edward L.
Serate, Jose
Withers, Sydnor T.
Simmons, Blake A.
Hodge, David B.
Westphall, Michael S.
Coon, Joshua J.
Dale, Bruce E.
Balan, Venkatesh
Keating, David H.
Zhang, Yaoping
Landick, Robert
Gasch, Audrey P.
Sato, Trey K.
author_sort Parreiras, Lucas S.
collection PubMed
description The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.
format Online
Article
Text
id pubmed-4164640
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41646402014-09-19 Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover Parreiras, Lucas S. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman Higbee, Alan J. La Reau, Alex Tremaine, Mary Qin, Li Willis, Laura B. Bice, Benjamin D. Bonfert, Brandi L. Pinhancos, Rebeca C. Balloon, Allison J. Uppugundla, Nirmal Liu, Tongjun Li, Chenlin Tanjore, Deepti Ong, Irene M. Li, Haibo Pohlmann, Edward L. Serate, Jose Withers, Sydnor T. Simmons, Blake A. Hodge, David B. Westphall, Michael S. Coon, Joshua J. Dale, Bruce E. Balan, Venkatesh Keating, David H. Zhang, Yaoping Landick, Robert Gasch, Audrey P. Sato, Trey K. PLoS One Research Article The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. Public Library of Science 2014-09-15 /pmc/articles/PMC4164640/ /pubmed/25222864 http://dx.doi.org/10.1371/journal.pone.0107499 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Parreiras, Lucas S.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
Higbee, Alan J.
La Reau, Alex
Tremaine, Mary
Qin, Li
Willis, Laura B.
Bice, Benjamin D.
Bonfert, Brandi L.
Pinhancos, Rebeca C.
Balloon, Allison J.
Uppugundla, Nirmal
Liu, Tongjun
Li, Chenlin
Tanjore, Deepti
Ong, Irene M.
Li, Haibo
Pohlmann, Edward L.
Serate, Jose
Withers, Sydnor T.
Simmons, Blake A.
Hodge, David B.
Westphall, Michael S.
Coon, Joshua J.
Dale, Bruce E.
Balan, Venkatesh
Keating, David H.
Zhang, Yaoping
Landick, Robert
Gasch, Audrey P.
Sato, Trey K.
Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title_full Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title_fullStr Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title_full_unstemmed Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title_short Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
title_sort engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant saccharomyces cerevisiae strain for anaerobic fermentation of xylose from afex pretreated corn stover
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164640/
https://www.ncbi.nlm.nih.gov/pubmed/25222864
http://dx.doi.org/10.1371/journal.pone.0107499
work_keys_str_mv AT parreiraslucass engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT breuerrebeccaj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT avanasinarasimhanragothaman engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT higbeealanj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT lareaualex engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT tremainemary engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT qinli engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT willislaurab engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT bicebenjamind engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT bonfertbrandil engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT pinhancosrebecac engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT balloonallisonj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT uppugundlanirmal engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT liutongjun engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT lichenlin engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT tanjoredeepti engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT ongirenem engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT lihaibo engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT pohlmannedwardl engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT seratejose engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT witherssydnort engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT simmonsblakea engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT hodgedavidb engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT westphallmichaels engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT coonjoshuaj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT dalebrucee engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT balanvenkatesh engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT keatingdavidh engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT zhangyaoping engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT landickrobert engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT gaschaudreyp engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover
AT satotreyk engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover