Cargando…
Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in de...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164640/ https://www.ncbi.nlm.nih.gov/pubmed/25222864 http://dx.doi.org/10.1371/journal.pone.0107499 |
_version_ | 1782334978100559872 |
---|---|
author | Parreiras, Lucas S. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman Higbee, Alan J. La Reau, Alex Tremaine, Mary Qin, Li Willis, Laura B. Bice, Benjamin D. Bonfert, Brandi L. Pinhancos, Rebeca C. Balloon, Allison J. Uppugundla, Nirmal Liu, Tongjun Li, Chenlin Tanjore, Deepti Ong, Irene M. Li, Haibo Pohlmann, Edward L. Serate, Jose Withers, Sydnor T. Simmons, Blake A. Hodge, David B. Westphall, Michael S. Coon, Joshua J. Dale, Bruce E. Balan, Venkatesh Keating, David H. Zhang, Yaoping Landick, Robert Gasch, Audrey P. Sato, Trey K. |
author_facet | Parreiras, Lucas S. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman Higbee, Alan J. La Reau, Alex Tremaine, Mary Qin, Li Willis, Laura B. Bice, Benjamin D. Bonfert, Brandi L. Pinhancos, Rebeca C. Balloon, Allison J. Uppugundla, Nirmal Liu, Tongjun Li, Chenlin Tanjore, Deepti Ong, Irene M. Li, Haibo Pohlmann, Edward L. Serate, Jose Withers, Sydnor T. Simmons, Blake A. Hodge, David B. Westphall, Michael S. Coon, Joshua J. Dale, Bruce E. Balan, Venkatesh Keating, David H. Zhang, Yaoping Landick, Robert Gasch, Audrey P. Sato, Trey K. |
author_sort | Parreiras, Lucas S. |
collection | PubMed |
description | The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. |
format | Online Article Text |
id | pubmed-4164640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41646402014-09-19 Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover Parreiras, Lucas S. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman Higbee, Alan J. La Reau, Alex Tremaine, Mary Qin, Li Willis, Laura B. Bice, Benjamin D. Bonfert, Brandi L. Pinhancos, Rebeca C. Balloon, Allison J. Uppugundla, Nirmal Liu, Tongjun Li, Chenlin Tanjore, Deepti Ong, Irene M. Li, Haibo Pohlmann, Edward L. Serate, Jose Withers, Sydnor T. Simmons, Blake A. Hodge, David B. Westphall, Michael S. Coon, Joshua J. Dale, Bruce E. Balan, Venkatesh Keating, David H. Zhang, Yaoping Landick, Robert Gasch, Audrey P. Sato, Trey K. PLoS One Research Article The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. Public Library of Science 2014-09-15 /pmc/articles/PMC4164640/ /pubmed/25222864 http://dx.doi.org/10.1371/journal.pone.0107499 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Parreiras, Lucas S. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman Higbee, Alan J. La Reau, Alex Tremaine, Mary Qin, Li Willis, Laura B. Bice, Benjamin D. Bonfert, Brandi L. Pinhancos, Rebeca C. Balloon, Allison J. Uppugundla, Nirmal Liu, Tongjun Li, Chenlin Tanjore, Deepti Ong, Irene M. Li, Haibo Pohlmann, Edward L. Serate, Jose Withers, Sydnor T. Simmons, Blake A. Hodge, David B. Westphall, Michael S. Coon, Joshua J. Dale, Bruce E. Balan, Venkatesh Keating, David H. Zhang, Yaoping Landick, Robert Gasch, Audrey P. Sato, Trey K. Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title | Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title_full | Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title_fullStr | Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title_full_unstemmed | Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title_short | Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover |
title_sort | engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant saccharomyces cerevisiae strain for anaerobic fermentation of xylose from afex pretreated corn stover |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164640/ https://www.ncbi.nlm.nih.gov/pubmed/25222864 http://dx.doi.org/10.1371/journal.pone.0107499 |
work_keys_str_mv | AT parreiraslucass engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT breuerrebeccaj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT avanasinarasimhanragothaman engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT higbeealanj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT lareaualex engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT tremainemary engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT qinli engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT willislaurab engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT bicebenjamind engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT bonfertbrandil engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT pinhancosrebecac engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT balloonallisonj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT uppugundlanirmal engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT liutongjun engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT lichenlin engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT tanjoredeepti engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT ongirenem engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT lihaibo engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT pohlmannedwardl engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT seratejose engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT witherssydnort engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT simmonsblakea engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT hodgedavidb engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT westphallmichaels engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT coonjoshuaj engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT dalebrucee engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT balanvenkatesh engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT keatingdavidh engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT zhangyaoping engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT landickrobert engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT gaschaudreyp engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover AT satotreyk engineeringandtwostageevolutionofalignocellulosichydrolysatetolerantsaccharomycescerevisiaestrainforanaerobicfermentationofxylosefromafexpretreatedcornstover |