Cargando…

Recent technological updates and clinical applications of induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Diecke, Sebastian, Jung, Seung Min, Lee, Jaecheol, Ju, Ji Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Association of Internal Medicine 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164716/
https://www.ncbi.nlm.nih.gov/pubmed/25228828
http://dx.doi.org/10.3904/kjim.2014.29.5.547
Descripción
Sumario:Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.