Cargando…

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids

The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel...

Descripción completa

Detalles Bibliográficos
Autores principales: Randel, Jason C., Niestemski, Francis C., Botello-Mendez, Andrés R., Mar, Warren, Ndabashimiye, Georges, Melinte, Sorin, Dahl, Jeremy E. P., Carlson, Robert M. K., Butova, Ekaterina D., Fokin, Andrey A., Schreiner, Peter R., Charlier, Jean-Christophe, Manoharan, Hari C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164769/
https://www.ncbi.nlm.nih.gov/pubmed/25202942
http://dx.doi.org/10.1038/ncomms5877
Descripción
Sumario:The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C(60) conjugate. By linking both sp(3) (diamondoid) and sp(2) (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C(60) molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism.