Cargando…
EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown fea...
Autores principales: | Jirayucharoensak, Suwicha, Pan-Ngum, Setha, Israsena, Pasin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165739/ https://www.ncbi.nlm.nih.gov/pubmed/25258728 http://dx.doi.org/10.1155/2014/627892 |
Ejemplares similares
-
Brain Exercising Games With Consumer-Grade Single-Channel Electroencephalogram Neurofeedback: Pre-Post Intervention Study
por: Israsena, Pasin, et al.
Publicado: (2021) -
A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment
por: Jirayucharoensak, Suwicha, et al.
Publicado: (2019) -
A CNN-Based Deep Learning Approach for SSVEP Detection Targeting Binaural Ear-EEG
por: Israsena, Pasin, et al.
Publicado: (2022) -
A Wearable In-Ear EEG Device for Emotion Monitoring
por: Athavipach, Chanavit, et al.
Publicado: (2019) -
Real-Time EEG-Based Happiness Detection System
por: Jatupaiboon, Noppadon, et al.
Publicado: (2013)