Cargando…
Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise
Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied ana...
Autores principales: | Hertäg, Loreen, Durstewitz, Daniel, Brunel, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167001/ https://www.ncbi.nlm.nih.gov/pubmed/25278872 http://dx.doi.org/10.3389/fncom.2014.00116 |
Ejemplares similares
-
An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data
por: Hertäg, Loreen, et al.
Publicado: (2012) -
An analytical approximation to the AdEx neuron model allows fast fitting to physiological data
por: Hertäg, Loreen, et al.
Publicado: (2011) -
Firing patterns in the adaptive exponential integrate-and-fire model
por: Naud, Richard, et al.
Publicado: (2008) -
Predicting neuronal activity with an adaptive exponential integrate-and-fire model
por: Marcille, Nicolas, et al.
Publicado: (2007) -
Non-monotonic effects of GABAergic synaptic inputs on neuronal firing
por: Abed Zadeh, Aghil, et al.
Publicado: (2022)