Cargando…
The Rhizome Mixture of Anemarrhena asphodeloides and Coptidis chinensis Ameliorates Acute and Chronic Colitis in Mice by Inhibiting the Binding of Lipopolysaccharide to TLR4 and IRAK1 Phosphorylation
In the previous study, the mixture of the rhizome of Anemarrhena asphodeloides (AA, family Liliaceae) and the rhizome of Coptidis chinensis (CC, family Ranunculaceae) (AC-mix) improved TNBS- or oxazolone-induced colitis in mice. Therefore, to investigate its anticolitic mechanism, we measured its ef...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167948/ https://www.ncbi.nlm.nih.gov/pubmed/25276218 http://dx.doi.org/10.1155/2014/809083 |
Sumario: | In the previous study, the mixture of the rhizome of Anemarrhena asphodeloides (AA, family Liliaceae) and the rhizome of Coptidis chinensis (CC, family Ranunculaceae) (AC-mix) improved TNBS- or oxazolone-induced colitis in mice. Therefore, to investigate its anticolitic mechanism, we measured its effect in acute and chronic DSS-induced colitic mice and investigated its anti-inflammatory mechanism in peritoneal macrophages. AC-mix potently suppressed DSS-induced body weight loss, colon shortening, myeloperoxidase activity, and TNF-α, IL-1β, and IL-6 expressions in acute or chronic DSS-stimulated colitic mice. Among AC-mix ingredients, AA, CC, and their main constituents mangiferin and berberine potently inhibited the expression of proinflammatory cytokines TNF-α and IL-1β, as well as the activation of NF-κB in LPS-stimulated peritoneal macrophages. AA and mangiferin potently inhibited IRAK phosphorylation, but CC and berberine potently inhibited the binding of LPS to TLR4 on macrophages, as well as the phosphorylation of IRAK1. AC-mix potently inhibited IRAK phosphorylation and LPS binding to TLR4 on macrophages. Based on these findings, AC-mix may ameliorate colitis by the synergistic inhibition of IRAK phosphorylation and LPS binding to TLR4 on macrophages. |
---|