Cargando…
On a New Three-Step Class of Methods and Its Acceleration for Nonlinear Equations
A class of derivative-free methods without memory for approximating a simple zero of a nonlinear equation is presented. The proposed class uses four function evaluations per iteration with convergence order eight. Therefore, it is an optimal three-step scheme without memory based on Kung-Traub conje...
Autores principales: | Lotfi, T., Mahdiani, K., Noori, Z., Khaksar Haghani, F., Shateyi, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168159/ https://www.ncbi.nlm.nih.gov/pubmed/25276843 http://dx.doi.org/10.1155/2014/134673 |
Ejemplares similares
-
On a Cubically Convergent Iterative Method for Matrix Sign
por: Sharifi, M., et al.
Publicado: (2015) -
On a New Iterative Scheme without Memory with Optimal Eighth Order
por: Sharifi, M., et al.
Publicado: (2014) -
An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations
por: Soleymani, Fazlollah, et al.
Publicado: (2013) -
On a Derivative-Free Variant of King's Family with Memory
por: Sharifi, M., et al.
Publicado: (2015) -
Numerical solutions of three classes of nonlinear parabolic integro-differential equations
por: Jangveladze, T, et al.
Publicado: (2016)