Cargando…
Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA
Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is use...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168492/ https://www.ncbi.nlm.nih.gov/pubmed/25019631 http://dx.doi.org/10.3390/s140712437 |
_version_ | 1782335556402806784 |
---|---|
author | Sato, Shinobu Takenaka, Shigeori |
author_facet | Sato, Shinobu Takenaka, Shigeori |
author_sort | Sato, Shinobu |
collection | PubMed |
description | Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types. |
format | Online Article Text |
id | pubmed-4168492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-41684922014-09-19 Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA Sato, Shinobu Takenaka, Shigeori Sensors (Basel) Article Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types. MDPI 2014-07-11 /pmc/articles/PMC4168492/ /pubmed/25019631 http://dx.doi.org/10.3390/s140712437 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Sato, Shinobu Takenaka, Shigeori Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title | Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title_full | Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title_fullStr | Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title_full_unstemmed | Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title_short | Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA |
title_sort | highly sensitive nuclease assays based on chemically modified dna or rna |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168492/ https://www.ncbi.nlm.nih.gov/pubmed/25019631 http://dx.doi.org/10.3390/s140712437 |
work_keys_str_mv | AT satoshinobu highlysensitivenucleaseassaysbasedonchemicallymodifieddnaorrna AT takenakashigeori highlysensitivenucleaseassaysbasedonchemicallymodifieddnaorrna |