Cargando…
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI) systems. The presented BCI approach included three stages: (1) a pre...
Autores principales: | Li, Xiaoou, Chen, Xun, Yan, Yuning, Wei, Wenshi, Wang, Z. Jane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168520/ https://www.ncbi.nlm.nih.gov/pubmed/25036334 http://dx.doi.org/10.3390/s140712784 |
Ejemplares similares
-
Correlation Kernels for Support Vector Machines Classification with Applications in Cancer Data
por: Jiang, Hao, et al.
Publicado: (2012) -
Introducing chaos behavior to kernel relevance vector machine (RVM) for four-class EEG classification
por: Dong, Enzeng, et al.
Publicado: (2018) -
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO
por: Li, Yang, et al.
Publicado: (2018) -
Learning with kernels: support vector machines, regularization, optimization, and beyond
por: Schölkopf, Bernhard, et al.
Publicado: (2002) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016)