Cargando…
Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity
Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stab...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169035/ https://www.ncbi.nlm.nih.gov/pubmed/23567210 http://dx.doi.org/10.4161/mabs.24291 |
_version_ | 1782335656171667456 |
---|---|
author | Shen, Yang Zeng, Lin Zhu, Aiping Blanc, Tim Patel, Dipa Pennello, Anthony Bari, Amtul Ng, Stanley Persaud, Kris Kang, Yun (Kenneth) Balderes, Paul Surguladze, David Hindi, Sagit Zhou, Qinwei Ludwig, Dale L. Snavely, Marshall |
author_facet | Shen, Yang Zeng, Lin Zhu, Aiping Blanc, Tim Patel, Dipa Pennello, Anthony Bari, Amtul Ng, Stanley Persaud, Kris Kang, Yun (Kenneth) Balderes, Paul Surguladze, David Hindi, Sagit Zhou, Qinwei Ludwig, Dale L. Snavely, Marshall |
author_sort | Shen, Yang |
collection | PubMed |
description | Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. |
format | Online Article Text |
id | pubmed-4169035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-41690352014-09-24 Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity Shen, Yang Zeng, Lin Zhu, Aiping Blanc, Tim Patel, Dipa Pennello, Anthony Bari, Amtul Ng, Stanley Persaud, Kris Kang, Yun (Kenneth) Balderes, Paul Surguladze, David Hindi, Sagit Zhou, Qinwei Ludwig, Dale L. Snavely, Marshall MAbs Report Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. Landes Bioscience 2013-05-01 2013-04-08 /pmc/articles/PMC4169035/ /pubmed/23567210 http://dx.doi.org/10.4161/mabs.24291 Text en Copyright © 2013 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Report Shen, Yang Zeng, Lin Zhu, Aiping Blanc, Tim Patel, Dipa Pennello, Anthony Bari, Amtul Ng, Stanley Persaud, Kris Kang, Yun (Kenneth) Balderes, Paul Surguladze, David Hindi, Sagit Zhou, Qinwei Ludwig, Dale L. Snavely, Marshall Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title | Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title_full | Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title_fullStr | Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title_full_unstemmed | Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title_short | Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
title_sort | removal of a c-terminal serine residue proximal to the inter-chain disulfide bond of a human igg1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169035/ https://www.ncbi.nlm.nih.gov/pubmed/23567210 http://dx.doi.org/10.4161/mabs.24291 |
work_keys_str_mv | AT shenyang removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT zenglin removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT zhuaiping removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT blanctim removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT pateldipa removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT pennelloanthony removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT bariamtul removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT ngstanley removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT persaudkris removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT kangyunkenneth removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT balderespaul removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT surguladzedavid removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT hindisagit removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT zhouqinwei removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT ludwigdalel removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity AT snavelymarshall removalofacterminalserineresidueproximaltotheinterchaindisulfidebondofahumanigg1lambdalightchainmediatesenhancedantibodystabilityandantibodydependentcellmediatedcytotoxicity |