Cargando…
Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria
Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169044/ https://www.ncbi.nlm.nih.gov/pubmed/25233460 http://dx.doi.org/10.1371/journal.pgen.1004616 |
_version_ | 1782335656894136320 |
---|---|
author | Akabane, Shiori Ueda, Takuya Nierhaus, Knud H. Takeuchi, Nono |
author_facet | Akabane, Shiori Ueda, Takuya Nierhaus, Knud H. Takeuchi, Nono |
author_sort | Akabane, Shiori |
collection | PubMed |
description | Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed. |
format | Online Article Text |
id | pubmed-4169044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41690442014-09-22 Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria Akabane, Shiori Ueda, Takuya Nierhaus, Knud H. Takeuchi, Nono PLoS Genet Research Article Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed. Public Library of Science 2014-09-18 /pmc/articles/PMC4169044/ /pubmed/25233460 http://dx.doi.org/10.1371/journal.pgen.1004616 Text en © 2014 Akabane et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Akabane, Shiori Ueda, Takuya Nierhaus, Knud H. Takeuchi, Nono Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title | Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title_full | Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title_fullStr | Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title_full_unstemmed | Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title_short | Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria |
title_sort | ribosome rescue and translation termination at non-standard stop codons by ict1 in mammalian mitochondria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169044/ https://www.ncbi.nlm.nih.gov/pubmed/25233460 http://dx.doi.org/10.1371/journal.pgen.1004616 |
work_keys_str_mv | AT akabaneshiori ribosomerescueandtranslationterminationatnonstandardstopcodonsbyict1inmammalianmitochondria AT uedatakuya ribosomerescueandtranslationterminationatnonstandardstopcodonsbyict1inmammalianmitochondria AT nierhausknudh ribosomerescueandtranslationterminationatnonstandardstopcodonsbyict1inmammalianmitochondria AT takeuchinono ribosomerescueandtranslationterminationatnonstandardstopcodonsbyict1inmammalianmitochondria |