Cargando…

Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing

Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library preparation methods for NGS have helped solve this problem, however, by combining the use of reduced repr...

Descripción completa

Detalles Bibliográficos
Autores principales: Gardner, Kyle M., Brown, Patrick, Cooke, Thomas F., Cann, Scott, Costa, Fabrizio, Bustamante, Carlos, Velasco, Riccardo, Troggio, Michela, Myles, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169160/
https://www.ncbi.nlm.nih.gov/pubmed/25031181
http://dx.doi.org/10.1534/g3.114.011023
_version_ 1782335668197785600
author Gardner, Kyle M.
Brown, Patrick
Cooke, Thomas F.
Cann, Scott
Costa, Fabrizio
Bustamante, Carlos
Velasco, Riccardo
Troggio, Michela
Myles, Sean
author_facet Gardner, Kyle M.
Brown, Patrick
Cooke, Thomas F.
Cann, Scott
Costa, Fabrizio
Bustamante, Carlos
Velasco, Riccardo
Troggio, Michela
Myles, Sean
author_sort Gardner, Kyle M.
collection PubMed
description Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library preparation methods for NGS have helped solve this problem, however, by combining the use of reduced representation libraries with DNA sample barcoding to generate genome-wide genotype data from a common set of genetic markers across a large number of samples. Here we use such a method, called genotyping-by-sequencing (GBS), to produce a data set for genetic mapping in an F1 population of apples (Malus × domestica) segregating for skin color. We show that GBS produces a relatively large, but extremely sparse, genotype matrix: over 270,000 SNPs were discovered but most SNPs have too much missing data across samples to be useful for genetic mapping. After filtering for genotype quality and missing data, only 6% of the 85 million DNA sequence reads contributed to useful genotype calls. Despite this limitation, using existing software and a set of simple heuristics, we generated a final genotype matrix containing 3967 SNPs from 89 DNA samples from a single lane of Illumina HiSeq and used it to create a saturated genetic linkage map and to identify a known QTL underlying apple skin color. We therefore demonstrate that GBS is a cost-effective method for generating genome-wide SNP data suitable for genetic mapping in a highly diverse and heterozygous agricultural species. We anticipate future improvements to the GBS analysis pipeline presented here that will enhance the utility of next-generation DNA sequence data for the purposes of genetic mapping across diverse species.
format Online
Article
Text
id pubmed-4169160
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-41691602014-09-24 Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing Gardner, Kyle M. Brown, Patrick Cooke, Thomas F. Cann, Scott Costa, Fabrizio Bustamante, Carlos Velasco, Riccardo Troggio, Michela Myles, Sean G3 (Bethesda) Investigations Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library preparation methods for NGS have helped solve this problem, however, by combining the use of reduced representation libraries with DNA sample barcoding to generate genome-wide genotype data from a common set of genetic markers across a large number of samples. Here we use such a method, called genotyping-by-sequencing (GBS), to produce a data set for genetic mapping in an F1 population of apples (Malus × domestica) segregating for skin color. We show that GBS produces a relatively large, but extremely sparse, genotype matrix: over 270,000 SNPs were discovered but most SNPs have too much missing data across samples to be useful for genetic mapping. After filtering for genotype quality and missing data, only 6% of the 85 million DNA sequence reads contributed to useful genotype calls. Despite this limitation, using existing software and a set of simple heuristics, we generated a final genotype matrix containing 3967 SNPs from 89 DNA samples from a single lane of Illumina HiSeq and used it to create a saturated genetic linkage map and to identify a known QTL underlying apple skin color. We therefore demonstrate that GBS is a cost-effective method for generating genome-wide SNP data suitable for genetic mapping in a highly diverse and heterozygous agricultural species. We anticipate future improvements to the GBS analysis pipeline presented here that will enhance the utility of next-generation DNA sequence data for the purposes of genetic mapping across diverse species. Genetics Society of America 2014-07-16 /pmc/articles/PMC4169160/ /pubmed/25031181 http://dx.doi.org/10.1534/g3.114.011023 Text en Copyright © 2014 Gardner et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Gardner, Kyle M.
Brown, Patrick
Cooke, Thomas F.
Cann, Scott
Costa, Fabrizio
Bustamante, Carlos
Velasco, Riccardo
Troggio, Michela
Myles, Sean
Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title_full Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title_fullStr Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title_full_unstemmed Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title_short Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing
title_sort fast and cost-effective genetic mapping in apple using next-generation sequencing
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169160/
https://www.ncbi.nlm.nih.gov/pubmed/25031181
http://dx.doi.org/10.1534/g3.114.011023
work_keys_str_mv AT gardnerkylem fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT brownpatrick fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT cookethomasf fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT cannscott fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT costafabrizio fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT bustamantecarlos fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT velascoriccardo fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT troggiomichela fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing
AT mylessean fastandcosteffectivegeneticmappinginappleusingnextgenerationsequencing