Cargando…
Impurities as a quantum thermometer for a Bose-Einstein condensate
We introduce a primary thermometer which measures the temperature of a Bose-Einstein Condensate in the sub-nK regime. We show, using quantum Fisher information, that the precision of our technique improves the state-of-the-art in thermometry in the sub-nK regime. The temperature of the condensate is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170192/ https://www.ncbi.nlm.nih.gov/pubmed/25241663 http://dx.doi.org/10.1038/srep06436 |
Sumario: | We introduce a primary thermometer which measures the temperature of a Bose-Einstein Condensate in the sub-nK regime. We show, using quantum Fisher information, that the precision of our technique improves the state-of-the-art in thermometry in the sub-nK regime. The temperature of the condensate is mapped onto the quantum phase of an atomic dot that interacts with the system for short times. We show that the highest precision is achieved when the phase is dynamical rather than geometric and when it is detected through Ramsey interferometry. Standard techniques to determine the temperature of a condensate involve an indirect estimation through mean particle velocities made after releasing the condensate. In contrast to these destructive measurements, our method involves a negligible disturbance of the system. |
---|