Cargando…
Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition
Pancreatic endocrine tumors (PETs) are characterised by an indolent behaviour in terms of tumor growth. However, most patients display metastasis at diagnosis and no cure is currently available. Since the PI3K/AKT/mTOR axis is deregulated in PETs, the mTOR inhibitor RAD001 represents the first line...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170632/ https://www.ncbi.nlm.nih.gov/pubmed/25026292 |
_version_ | 1782335839118819328 |
---|---|
author | Passacantilli, Ilaria Capurso, Gabriele Archibugi, Livia Calabretta, Sara Caldarola, Sara Loreni, Fabrizio Fave, Gianfranco Delle Sette, Claudio |
author_facet | Passacantilli, Ilaria Capurso, Gabriele Archibugi, Livia Calabretta, Sara Caldarola, Sara Loreni, Fabrizio Fave, Gianfranco Delle Sette, Claudio |
author_sort | Passacantilli, Ilaria |
collection | PubMed |
description | Pancreatic endocrine tumors (PETs) are characterised by an indolent behaviour in terms of tumor growth. However, most patients display metastasis at diagnosis and no cure is currently available. Since the PI3K/AKT/mTOR axis is deregulated in PETs, the mTOR inhibitor RAD001 represents the first line treatment. Nevertheless, some patients do not respond to treatments and most acquire resistance. Inhibition of mTOR leads to feedback re-activation of PI3K activity, which may promote resistance to RAD001. Thus, PI3K represents a novel potential target for PETs. We tested the impact of three novel PI3K inhibitors (BEZ235, BKM120 and BYL719) on proliferation of PET cells that are responsive (BON-1) or unresponsive (QGP-1) to RAD001. BEZ235 was the most efficient in inhibiting proliferation in PET cells. Furthermore, combined treatment with BEZ235 and RAD001 exhibited synergic effects and was also effective in BON-1 that acquired resistance to RAD001 (BON-1 RR). Analysis of PI3K/AKT/mTOR pathway showed that RAD001 and BEZ235 only partially inhibited mTOR-dependent phosphorylation of 4EBP1. By contrast, combined therapy with the two inhibitors strongly inhibited phosphorylation of 4EBP1, assembly of the translational initiation complex and protein synthesis. Thus, combined treatment with BEZ235 may represent suitable therapy to counteract primary and acquired resistance to RAD001 in PETs. |
format | Online Article Text |
id | pubmed-4170632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-41706322014-09-22 Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition Passacantilli, Ilaria Capurso, Gabriele Archibugi, Livia Calabretta, Sara Caldarola, Sara Loreni, Fabrizio Fave, Gianfranco Delle Sette, Claudio Oncotarget Research Paper Pancreatic endocrine tumors (PETs) are characterised by an indolent behaviour in terms of tumor growth. However, most patients display metastasis at diagnosis and no cure is currently available. Since the PI3K/AKT/mTOR axis is deregulated in PETs, the mTOR inhibitor RAD001 represents the first line treatment. Nevertheless, some patients do not respond to treatments and most acquire resistance. Inhibition of mTOR leads to feedback re-activation of PI3K activity, which may promote resistance to RAD001. Thus, PI3K represents a novel potential target for PETs. We tested the impact of three novel PI3K inhibitors (BEZ235, BKM120 and BYL719) on proliferation of PET cells that are responsive (BON-1) or unresponsive (QGP-1) to RAD001. BEZ235 was the most efficient in inhibiting proliferation in PET cells. Furthermore, combined treatment with BEZ235 and RAD001 exhibited synergic effects and was also effective in BON-1 that acquired resistance to RAD001 (BON-1 RR). Analysis of PI3K/AKT/mTOR pathway showed that RAD001 and BEZ235 only partially inhibited mTOR-dependent phosphorylation of 4EBP1. By contrast, combined therapy with the two inhibitors strongly inhibited phosphorylation of 4EBP1, assembly of the translational initiation complex and protein synthesis. Thus, combined treatment with BEZ235 may represent suitable therapy to counteract primary and acquired resistance to RAD001 in PETs. Impact Journals LLC 2014-06-18 /pmc/articles/PMC4170632/ /pubmed/25026292 Text en Copyright: © 2014 Passacantilli et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Passacantilli, Ilaria Capurso, Gabriele Archibugi, Livia Calabretta, Sara Caldarola, Sara Loreni, Fabrizio Fave, Gianfranco Delle Sette, Claudio Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title | Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title_full | Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title_fullStr | Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title_full_unstemmed | Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title_short | Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized cell lines to mTOR inhibition |
title_sort | combined therapy with rad001 e bez235 overcomes resistance of pet immortalized cell lines to mtor inhibition |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170632/ https://www.ncbi.nlm.nih.gov/pubmed/25026292 |
work_keys_str_mv | AT passacantilliilaria combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT capursogabriele combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT archibugilivia combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT calabrettasara combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT caldarolasara combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT lorenifabrizio combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT favegianfrancodelle combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition AT setteclaudio combinedtherapywithrad001ebez235overcomesresistanceofpetimmortalizedcelllinestomtorinhibition |