Cargando…
Validation in Principal Components Analysis Applied to EEG Data
The well-known multivariate technique Principal Components Analysis (PCA) is usually applied to a sample, and so component scores are subjected to sampling variability. However, few studies address their stability, an important topic when the sample size is small. This work presents three validation...
Autores principales: | Costa, João Carlos G. D., Da-Silva, Paulo José G., Almeida, Renan Moritz V. R., Infantosi, Antonio Fernando C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170877/ https://www.ncbi.nlm.nih.gov/pubmed/25276221 http://dx.doi.org/10.1155/2014/413801 |
Ejemplares similares
-
Principal component tests: applied to temporal gene expression data
por: Zhang, Wensheng, et al.
Publicado: (2009) -
Permutation-validated principal components analysis of microarray data
por: Landgrebe, Jobst, et al.
Publicado: (2002) -
Biometric variability of goat populations revealed by means of principal component analysis
por: Pires, Luanna Chácara, et al.
Publicado: (2012) -
OS-PCA: Orthogonal Smoothed Principal Component Analysis Applied to Metabolome Data
por: Yamamoto, Hiroyuki, et al.
Publicado: (2021) -
Principal Component Analysis applied directly to Sequence Matrix
por: Konishi, Tomokazu, et al.
Publicado: (2019)