Cargando…
Porous silicon functionalization for possible arsenic adsorption
Thiol-functionalized porous silicon (PS) monolayer was evaluated for its possible application in As (III) adsorption. Dimercaptosuccinic acid (DMSA) attached to mesoporous silicon via amide bond linkages was used as a chelate for As (III). Two different aminosilanes namely 3-(aminopropyl) triethoxys...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171714/ https://www.ncbi.nlm.nih.gov/pubmed/25249826 http://dx.doi.org/10.1186/1556-276X-9-508 |
Sumario: | Thiol-functionalized porous silicon (PS) monolayer was evaluated for its possible application in As (III) adsorption. Dimercaptosuccinic acid (DMSA) attached to mesoporous silicon via amide bond linkages was used as a chelate for As (III). Two different aminosilanes namely 3-(aminopropyl) triethoxysilane (APTES) and 3-aminopropyl (diethoxy)-methylsilane (APDEMS) were tested as linkers to evaluate the relative response for DMSA attachment. The aminosilane-modified PS samples were attached to DMSA by wet impregnation followed by the adsorption of As (III). Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to identify the functional groups and to estimate the As (III) content, respectively. FTIR spectroscopy confirmed the covalent bonding of DMSA with amide and R-COOH groups on the nanostructured porous surface. XPS confirms the preferred arsenic adsorption on the surface of PS/DMSA samples as compared to the aminosilane-modified and bare PS substrates. |
---|