Cargando…

mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3

Recent clinical trials using rapalogues in tuberous sclerosis complex (TSC) show regression in volume of typically vascularised tumours including angiomyolipomas (AMLs) and sub-ependymal giant cell astrocytomas (SEGAs). By blocking mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signall...

Descripción completa

Detalles Bibliográficos
Autores principales: Dodd, Kayleigh M., Yang, Jian, Shen, Ming Hong, Sampson, Julian R., Tee, Andrew R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172452/
https://www.ncbi.nlm.nih.gov/pubmed/24931163
http://dx.doi.org/10.1038/onc.2014.164
Descripción
Sumario:Recent clinical trials using rapalogues in tuberous sclerosis complex (TSC) show regression in volume of typically vascularised tumours including angiomyolipomas (AMLs) and sub-ependymal giant cell astrocytomas (SEGAs). By blocking mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signalling, rapalogue efficacy is likely to occur in part through suppression of hypoxia inducible factors (HIFs) and vascular endothelial growth factors (VEGFs). We show that rapamycin reduces HIF-1α protein levels, and to a lesser extent VEGF-A levels, in renal cystadenoma cells in a Tsc2+/− mouse model. We establish that mTORC1 drives HIF-1α protein accumulation through enhanced transcription of HIF-1α mRNA, a process that is blocked by either inhibition or knockdown of signal transducer and activation of transcription 3 (STAT3). Furthermore, we demonstrate that STAT3 is directly phosphorylated by mTORC1 on Ser727 during hypoxia, promoting HIF-1α mRNA transcription. mTORC1 also regulates HIF-1α synthesis on a translational level via co-operative regulation of both initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase-1 (S6K1), whilst HIF-1α degradation remains unaffected. We therefore propose that mTORC1 drives HIF-1α synthesis in a multi-faceted manner through 4E-BP1/eIF4E, S6K1 and STAT3. Interestingly, we observe a disconnect between HIF-1α protein levels and VEGF-A expression. While both S6K1 and 4E-BP1 regulate HIF-1α translation, VEGF-A is primarily under the control of 4E-BP1/eIF4E. S6K1 inhibition reduces HIF-1α but not VEGF-A expression, suggesting that mTORC1 mediates VEGF-A expression via both HIF-1α-dependent and -independent mechanisms. Our work has important implications for the treatment of vascularised tumours, where mTORC1 acts as a central mediator of STAT3, HIF-1α, VEGF-A and angiogenesis via multiple signalling mechanisms.