Cargando…
The Augmented Lagrange Multipliers Method for Matrix Completion from Corrupted Samplings with Application to Mixed Gaussian-Impulse Noise Removal
This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformati...
Autores principales: | Meng, Fan, Yang, Xiaomei, Zhou, Chenghu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172684/ https://www.ncbi.nlm.nih.gov/pubmed/25248103 http://dx.doi.org/10.1371/journal.pone.0108125 |
Ejemplares similares
-
On the reduction of mixed Gaussian and impulsive noise in heavily corrupted color images
por: Smolka, Bogdan, et al.
Publicado: (2023) -
Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
por: Jin, Qiyu, et al.
Publicado: (2017) -
An efficient method to remove mixed Gaussian and random-valued impulse noise
por: Xing, Mengdi, et al.
Publicado: (2022) -
Constrained optimization and Lagrange multiplier methods
por: Bertsekas, Dimitri P, et al.
Publicado: (1982) -
Physics successfully implements Lagrange multiplier optimization
por: Vadlamani, Sri Krishna, et al.
Publicado: (2020)