Cargando…
MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach
Motivation: The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand wh...
Autores principales: | Daly, Rónán, Rogers, Simon, Wandy, Joe, Jankevics, Andris, Burgess, Karl E. V., Breitling, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173012/ https://www.ncbi.nlm.nih.gov/pubmed/24916385 http://dx.doi.org/10.1093/bioinformatics/btu370 |
Ejemplares similares
-
ipaPy2: Integrated Probabilistic Annotation (IPA) 2.0—an improved Bayesian-based method for the annotation of LC–MS/MS untargeted metabolomics data
por: Del Carratore, Francesco, et al.
Publicado: (2023) -
ProbMetab: an R package for Bayesian probabilistic annotation of LC–MS-based metabolomics
por: Silva, Ricardo R., et al.
Publicado: (2014) -
PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data
por: Gloaguen, Yoann, et al.
Publicado: (2017) -
Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets
por: Wandy, Joe, et al.
Publicado: (2015) -
LC-MS metabolomics from study design to data-analysis – using a versatile pathogen as a test case
por: Berg, Maya, et al.
Publicado: (2013)