Cargando…

MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure

Summary: MAGI is a web service for fast MicroRNA-Seq data analysis in a graphics processing unit (GPU) infrastructure. Using just a browser, users have access to results as web reports in just a few hours—>600% end-to-end performance improvement over state of the art. MAGI’s salient features are...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jihoon, Levy, Eric, Ferbrache, Alex, Stepanowsky, Petra, Farcas, Claudiu, Wang, Shuang, Brunner, Stefan, Bath, Tyler, Wu, Yuan, Ohno-Machado, Lucila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173015/
https://www.ncbi.nlm.nih.gov/pubmed/24907367
http://dx.doi.org/10.1093/bioinformatics/btu377
_version_ 1782336121761431552
author Kim, Jihoon
Levy, Eric
Ferbrache, Alex
Stepanowsky, Petra
Farcas, Claudiu
Wang, Shuang
Brunner, Stefan
Bath, Tyler
Wu, Yuan
Ohno-Machado, Lucila
author_facet Kim, Jihoon
Levy, Eric
Ferbrache, Alex
Stepanowsky, Petra
Farcas, Claudiu
Wang, Shuang
Brunner, Stefan
Bath, Tyler
Wu, Yuan
Ohno-Machado, Lucila
author_sort Kim, Jihoon
collection PubMed
description Summary: MAGI is a web service for fast MicroRNA-Seq data analysis in a graphics processing unit (GPU) infrastructure. Using just a browser, users have access to results as web reports in just a few hours—>600% end-to-end performance improvement over state of the art. MAGI’s salient features are (i) transfer of large input files in native FASTA with Qualities (FASTQ) format through drag-and-drop operations, (ii) rapid prediction of microRNA target genes leveraging parallel computing with GPU devices, (iii) all-in-one analytics with novel feature extraction, statistical test for differential expression and diagnostic plot generation for quality control and (iv) interactive visualization and exploration of results in web reports that are readily available for publication. Availability and implementation: MAGI relies on the Node.js JavaScript framework, along with NVIDIA CUDA C, PHP: Hypertext Preprocessor (PHP), Perl and R. It is freely available at http://magi.ucsd.edu. Contact: j5kim@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-4173015
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-41730152014-09-25 MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure Kim, Jihoon Levy, Eric Ferbrache, Alex Stepanowsky, Petra Farcas, Claudiu Wang, Shuang Brunner, Stefan Bath, Tyler Wu, Yuan Ohno-Machado, Lucila Bioinformatics Applications Notes Summary: MAGI is a web service for fast MicroRNA-Seq data analysis in a graphics processing unit (GPU) infrastructure. Using just a browser, users have access to results as web reports in just a few hours—>600% end-to-end performance improvement over state of the art. MAGI’s salient features are (i) transfer of large input files in native FASTA with Qualities (FASTQ) format through drag-and-drop operations, (ii) rapid prediction of microRNA target genes leveraging parallel computing with GPU devices, (iii) all-in-one analytics with novel feature extraction, statistical test for differential expression and diagnostic plot generation for quality control and (iv) interactive visualization and exploration of results in web reports that are readily available for publication. Availability and implementation: MAGI relies on the Node.js JavaScript framework, along with NVIDIA CUDA C, PHP: Hypertext Preprocessor (PHP), Perl and R. It is freely available at http://magi.ucsd.edu. Contact: j5kim@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2014-10 2014-06-06 /pmc/articles/PMC4173015/ /pubmed/24907367 http://dx.doi.org/10.1093/bioinformatics/btu377 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Applications Notes
Kim, Jihoon
Levy, Eric
Ferbrache, Alex
Stepanowsky, Petra
Farcas, Claudiu
Wang, Shuang
Brunner, Stefan
Bath, Tyler
Wu, Yuan
Ohno-Machado, Lucila
MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title_full MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title_fullStr MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title_full_unstemmed MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title_short MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
title_sort magi: a node.js web service for fast microrna-seq analysis in a gpu infrastructure
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173015/
https://www.ncbi.nlm.nih.gov/pubmed/24907367
http://dx.doi.org/10.1093/bioinformatics/btu377
work_keys_str_mv AT kimjihoon magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT levyeric magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT ferbrachealex magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT stepanowskypetra magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT farcasclaudiu magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT wangshuang magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT brunnerstefan magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT bathtyler magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT wuyuan magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure
AT ohnomachadolucila magianodejswebserviceforfastmicrornaseqanalysisinagpuinfrastructure