Cargando…
Improving upon the efficiency of complete case analysis when covariates are MNAR
Missing values in covariates of regression models are a pervasive problem in empirical research. Popular approaches for analyzing partially observed datasets include complete case analysis (CCA), multiple imputation (MI), and inverse probability weighting (IPW). In the case of missing covariate valu...
Autores principales: | Bartlett, Jonathan W., Carpenter, James R., Tilling, Kate, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173105/ https://www.ncbi.nlm.nih.gov/pubmed/24907708 http://dx.doi.org/10.1093/biostatistics/kxu023 |
Ejemplares similares
-
Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR
por: Vadlamudi, Ratna K., et al.
Publicado: (2007) -
Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors
por: Galimard, Jacques-Emmanuel, et al.
Publicado: (2018) -
Comparison of Different LGM-Based Methods with MAR and MNAR Dropout Data
por: Li, Meijuan, et al.
Publicado: (2017) -
Simple imputation methods were inadequate for missing not at random (MNAR) quality of life data
por: Fielding, Shona, et al.
Publicado: (2008) -
MNAR functionally interacts with both NH(2)- and COOH-terminal GR domains to modulate transactivation
por: Kayahara, Midori, et al.
Publicado: (2008)