Cargando…

Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa

PURPOSE: The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. METHODS: The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-b...

Descripción completa

Detalles Bibliográficos
Autores principales: García-García, Gema, Aller, Elena, Jaijo, Teresa, Aparisi, Maria J., Larrieu, Lise, Faugère, Valérie, Blanco-Kelly, Fiona, Ayuso, Carmen, Roux, Anne-Francoise, Millán, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173666/
https://www.ncbi.nlm.nih.gov/pubmed/25352746
Descripción
Sumario:PURPOSE: The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. METHODS: The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. RESULTS: We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. CONCLUSIONS: Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.