Cargando…

Intracellular Vibrio parahaemolyticus Escapes the Vacuole and Establishes a Replicative Niche in the Cytosol of Epithelial Cells

Vibrio parahaemolyticus is a globally disseminated Gram-negative marine bacterium and the leading cause of seafood-borne acute gastroenteritis. Pathogenic bacterial isolates encode two type III secretion systems (T3SS), with the second system (T3SS2) considered the main virulence factor in mammalian...

Descripción completa

Detalles Bibliográficos
Autores principales: de Souza Santos, Marcela, Orth, Kim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173779/
https://www.ncbi.nlm.nih.gov/pubmed/25205094
http://dx.doi.org/10.1128/mBio.01506-14
Descripción
Sumario:Vibrio parahaemolyticus is a globally disseminated Gram-negative marine bacterium and the leading cause of seafood-borne acute gastroenteritis. Pathogenic bacterial isolates encode two type III secretion systems (T3SS), with the second system (T3SS2) considered the main virulence factor in mammalian hosts. For many decades, V. parahaemolyticus has been studied as an exclusively extracellular bacterium. However, the recent characterization of the T3SS2 effector protein VopC has suggested that this pathogen has the ability to invade, survive, and replicate within epithelial cells. Herein, we characterize this intracellular lifestyle in detail. We show that following internalization, V. parahaemolyticus is contained in vacuoles that develop into early endosomes, which subsequently mature into late endosomes. V. parahaemolyticus then escapes into the cytoplasm prior to vacuolar fusion with lysosomes. Vacuolar acidification is an important trigger for this escape. The cytoplasm serves as the pathogen’s primary intracellular replicative niche; cytosolic replication is rapid and robust, with cells often containing over 150 bacteria by the time of cell lysis. These results show how V. parahaemolyticus successfully establishes an intracellular lifestyle that could contribute to its survival and dissemination during infection.