Cargando…
Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia
Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plas...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173999/ https://www.ncbi.nlm.nih.gov/pubmed/25121984 http://dx.doi.org/10.1194/jlr.M049726 |
_version_ | 1782336281613697024 |
---|---|
author | Connolly, Katherine D. Willis, Gareth R. Datta, Dev B. N. Ellins, Elizabeth A. Ladell, Kristin Price, David A. Guschina, Irina A. Rees, D. Aled James, Philip E. |
author_facet | Connolly, Katherine D. Willis, Gareth R. Datta, Dev B. N. Ellins, Elizabeth A. Ladell, Kristin Price, David A. Guschina, Irina A. Rees, D. Aled James, Philip E. |
author_sort | Connolly, Katherine D. |
collection | PubMed |
description | Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis. |
format | Online Article Text |
id | pubmed-4173999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-41739992014-10-01 Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia Connolly, Katherine D. Willis, Gareth R. Datta, Dev B. N. Ellins, Elizabeth A. Ladell, Kristin Price, David A. Guschina, Irina A. Rees, D. Aled James, Philip E. J Lipid Res Research Articles Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis. The American Society for Biochemistry and Molecular Biology 2014-10 /pmc/articles/PMC4173999/ /pubmed/25121984 http://dx.doi.org/10.1194/jlr.M049726 Text en Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc. http://creativecommons.org/licenses/by/3.0/ Author’s Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | Research Articles Connolly, Katherine D. Willis, Gareth R. Datta, Dev B. N. Ellins, Elizabeth A. Ladell, Kristin Price, David A. Guschina, Irina A. Rees, D. Aled James, Philip E. Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title | Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title_full | Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title_fullStr | Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title_full_unstemmed | Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title_short | Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
title_sort | lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173999/ https://www.ncbi.nlm.nih.gov/pubmed/25121984 http://dx.doi.org/10.1194/jlr.M049726 |
work_keys_str_mv | AT connollykatherined lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT willisgarethr lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT dattadevbn lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT ellinselizabetha lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT ladellkristin lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT pricedavida lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT guschinairinaa lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT reesdaled lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia AT jamesphilipe lipoproteinapheresisreducescirculatingmicroparticlesinindividualswithfamilialhypercholesterolemia |