Cargando…
Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue
BACKGROUND: In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174158/ https://www.ncbi.nlm.nih.gov/pubmed/25289235 http://dx.doi.org/10.1097/GOX.0b013e3182a7f222 |
_version_ | 1782336315099971584 |
---|---|
author | Bani, Daniele Li, Alessandro Quattrini Freschi, Giancarlo Russo, Giulia Lo |
author_facet | Bani, Daniele Li, Alessandro Quattrini Freschi, Giancarlo Russo, Giulia Lo |
author_sort | Bani, Daniele |
collection | PubMed |
description | BACKGROUND: In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. METHODS: Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. RESULTS: Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. CONCLUSIONS: This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes. |
format | Online Article Text |
id | pubmed-4174158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Wolters Kluwer Health |
record_format | MEDLINE/PubMed |
spelling | pubmed-41741582014-10-06 Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue Bani, Daniele Li, Alessandro Quattrini Freschi, Giancarlo Russo, Giulia Lo Plast Reconstr Surg Glob Open Experimental BACKGROUND: In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. METHODS: Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. RESULTS: Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. CONCLUSIONS: This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes. Wolters Kluwer Health 2013-10-07 /pmc/articles/PMC4174158/ /pubmed/25289235 http://dx.doi.org/10.1097/GOX.0b013e3182a7f222 Text en Copyright © 2013 by the American Society of Plastic Surgeons-Global Open http://creativecommons.org/licenses/by-nc-nd/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivitives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially. |
spellingShingle | Experimental Bani, Daniele Li, Alessandro Quattrini Freschi, Giancarlo Russo, Giulia Lo Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title | Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title_full | Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title_fullStr | Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title_full_unstemmed | Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title_short | Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue |
title_sort | histological and ultrastructural effects of ultrasound-induced cavitation on human skin adipose tissue |
topic | Experimental |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174158/ https://www.ncbi.nlm.nih.gov/pubmed/25289235 http://dx.doi.org/10.1097/GOX.0b013e3182a7f222 |
work_keys_str_mv | AT banidaniele histologicalandultrastructuraleffectsofultrasoundinducedcavitationonhumanskinadiposetissue AT lialessandroquattrini histologicalandultrastructuraleffectsofultrasoundinducedcavitationonhumanskinadiposetissue AT freschigiancarlo histologicalandultrastructuraleffectsofultrasoundinducedcavitationonhumanskinadiposetissue AT russogiulialo histologicalandultrastructuraleffectsofultrasoundinducedcavitationonhumanskinadiposetissue |