Cargando…
Nanotechnology for the detection and kill of circulating tumor cells
Circulating tumor cells (CTCs) represent a surrogate biomarker of hematogenous metastases and thus could be considered as a ‘liquid biopsy’ which reveals metastasis in action. But it is absolutely a challenge to detect CTCs due to their extreme rarity. At present, the most common principle is to tak...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174536/ https://www.ncbi.nlm.nih.gov/pubmed/25258614 http://dx.doi.org/10.1186/1556-276X-9-500 |
Sumario: | Circulating tumor cells (CTCs) represent a surrogate biomarker of hematogenous metastases and thus could be considered as a ‘liquid biopsy’ which reveals metastasis in action. But it is absolutely a challenge to detect CTCs due to their extreme rarity. At present, the most common principle is to take advantage of the epithelial surface markers of CTCs which attach to a specific antibody. Antibody-magnetic nanobeads combine with the epithelial surface markers, and then the compound is processed by washing, separation, and detection. However, a proportion of CTC antigen expressions are down-regulated or lost in the process of epithelial-mesenchymal transition (EMT), and thus, this part of CTCs cannot be detected by classical detection methods such as CellSearch. To resolve this problem, some multiple-marker CTC detections have been developed rapidly. Additionally, nanotechnology is a promising approach to kill CTCs with high efficiency. Implantable nanotubes coated with apoptosis-promoting molecules improve the disease-free survival and overall survival. The review introduces some novel CTC detection techniques and therapeutic methods by virtue of nanotechnology to provide a better knowledge of the progress about CTC study. |
---|