Cargando…

The arithmetic problem size effect in children: an event-related potential study

This study used for the first time event-related potentials (ERPs) to examine the well-known arithmetic problem size effect in children. The electrophysiological correlates of this problem size effect have been well documented in adults, but such information in children is lacking. In the present st...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Beek, Leen, Ghesquièr, Pol, De Smedt, Bert, Lagae, Lieven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174746/
https://www.ncbi.nlm.nih.gov/pubmed/25309405
http://dx.doi.org/10.3389/fnhum.2014.00756
Descripción
Sumario:This study used for the first time event-related potentials (ERPs) to examine the well-known arithmetic problem size effect in children. The electrophysiological correlates of this problem size effect have been well documented in adults, but such information in children is lacking. In the present study, 22 typically developing 12-year-olds were asked to solve single-digit addition problems of small (sum ≤ 10) and large problem size (sum > 10) and to speak the solution into a voice key while ERPs were recorded. Children displayed similar early and late components compared to previous adult studies on the problem size effect. There was no effect of problem size on the early components P1, N1, and P2. The peak amplitude of the N2 component showed more negative potentials on left and right anterior electrodes for large additions compared to small additions, which might reflect differences in attentional and working memory resources between large and small problems. The mean amplitude of the late positivity component which follows the N2, was significantly larger for large than for small additions at right parieto-occipital electrodes, in line with previous adult data. The ERPs of the problem size effect during arithmetic might be a useful neural marker for future studies on fact retrieval impairments in children with mathematical difficulties.