Cargando…

Current Insights into Research on Rice stripe virus

Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Sev...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Won Kyong, Lian, Sen, Kim, Sang-Min, Park, Sang-Ho, Kim, Kook-Hyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Plant Pathology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174810/
https://www.ncbi.nlm.nih.gov/pubmed/25288949
http://dx.doi.org/10.5423/PPJ.RW.10.2012.0158
Descripción
Sumario:Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.