Cargando…
A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology
Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175314/ https://www.ncbi.nlm.nih.gov/pubmed/25107912 http://dx.doi.org/10.1074/jbc.M114.586156 |
_version_ | 1782336477379690496 |
---|---|
author | Paton, Leigh Bitoun, Emmanuelle Kenyon, Janet Priestman, David A. Oliver, Peter L. Edwards, Benjamin Platt, Frances M. Davies, Kay E. |
author_facet | Paton, Leigh Bitoun, Emmanuelle Kenyon, Janet Priestman, David A. Oliver, Peter L. Edwards, Benjamin Platt, Frances M. Davies, Kay E. |
author_sort | Paton, Leigh |
collection | PubMed |
description | Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene knock-out mouse model of MLII lacks some of the characteristic features of the human disease, our novel mouse model more fully recapitulates the human pathology, showing growth retardation, skeletal and facial abnormalities, increased circulating lysosomal enzymatic activities, intracellular lysosomal storage, and reduced life span. Importantly, MLII behavioral deficits are characterized for the first time, including impaired motor function and psychomotor retardation. Histological analysis of the brain revealed progressive neurodegeneration in the cerebellum with severe Purkinje cell loss as the underlying cause of the ataxic gait. In addition, based on the loss of Npc2 (Niemann-Pick type C 2) protein expression in the brain, the mice were treated with 2-hydroxypropyl-β-cyclodextrin, a drug previously reported to rescue Purkinje cell death in a mouse model of Niemann-Pick type C disease. No improvement in brain pathology was observed. This indicates that cerebellar degeneration is not primarily triggered by loss of Npc2 function. This study emphasizes the value of modeling MLII patient mutations to generate clinically relevant mouse mutants to elucidate the pathogenic molecular pathways of MLII and address their amenability to therapy. |
format | Online Article Text |
id | pubmed-4175314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-41753142014-09-26 A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology Paton, Leigh Bitoun, Emmanuelle Kenyon, Janet Priestman, David A. Oliver, Peter L. Edwards, Benjamin Platt, Frances M. Davies, Kay E. J Biol Chem Molecular Bases of Disease Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene knock-out mouse model of MLII lacks some of the characteristic features of the human disease, our novel mouse model more fully recapitulates the human pathology, showing growth retardation, skeletal and facial abnormalities, increased circulating lysosomal enzymatic activities, intracellular lysosomal storage, and reduced life span. Importantly, MLII behavioral deficits are characterized for the first time, including impaired motor function and psychomotor retardation. Histological analysis of the brain revealed progressive neurodegeneration in the cerebellum with severe Purkinje cell loss as the underlying cause of the ataxic gait. In addition, based on the loss of Npc2 (Niemann-Pick type C 2) protein expression in the brain, the mice were treated with 2-hydroxypropyl-β-cyclodextrin, a drug previously reported to rescue Purkinje cell death in a mouse model of Niemann-Pick type C disease. No improvement in brain pathology was observed. This indicates that cerebellar degeneration is not primarily triggered by loss of Npc2 function. This study emphasizes the value of modeling MLII patient mutations to generate clinically relevant mouse mutants to elucidate the pathogenic molecular pathways of MLII and address their amenability to therapy. American Society for Biochemistry and Molecular Biology 2014-09-26 2014-08-08 /pmc/articles/PMC4175314/ /pubmed/25107912 http://dx.doi.org/10.1074/jbc.M114.586156 Text en © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | Molecular Bases of Disease Paton, Leigh Bitoun, Emmanuelle Kenyon, Janet Priestman, David A. Oliver, Peter L. Edwards, Benjamin Platt, Frances M. Davies, Kay E. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title | A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title_full | A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title_fullStr | A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title_full_unstemmed | A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title_short | A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology |
title_sort | novel mouse model of a patient mucolipidosis ii mutation recapitulates disease pathology |
topic | Molecular Bases of Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175314/ https://www.ncbi.nlm.nih.gov/pubmed/25107912 http://dx.doi.org/10.1074/jbc.M114.586156 |
work_keys_str_mv | AT patonleigh anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT bitounemmanuelle anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT kenyonjanet anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT priestmandavida anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT oliverpeterl anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT edwardsbenjamin anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT plattfrancesm anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT davieskaye anovelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT patonleigh novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT bitounemmanuelle novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT kenyonjanet novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT priestmandavida novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT oliverpeterl novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT edwardsbenjamin novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT plattfrancesm novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology AT davieskaye novelmousemodelofapatientmucolipidosisiimutationrecapitulatesdiseasepathology |