Cargando…
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elim...
Autores principales: | Huang, Mei-Ling, Hung, Yung-Hsiang, Lee, W. M., Li, R. K., Jiang, Bo-Ru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175386/ https://www.ncbi.nlm.nih.gov/pubmed/25295306 http://dx.doi.org/10.1155/2014/795624 |
Ejemplares similares
-
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
por: Lin, Xiaohui, et al.
Publicado: (2017) -
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
por: Liang, Yanchun, et al.
Publicado: (2011) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009)