Cargando…
Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan
Epigenetic modifications of chromatin structure provide a mechanistic interface for gene–environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175498/ https://www.ncbi.nlm.nih.gov/pubmed/25227252 http://dx.doi.org/10.1101/lm.033506.113 |
_version_ | 1782336494335164416 |
---|---|
author | Spiegel, Amy M. Sewal, Angila S. Rapp, Peter R. |
author_facet | Spiegel, Amy M. Sewal, Angila S. Rapp, Peter R. |
author_sort | Spiegel, Amy M. |
collection | PubMed |
description | Epigenetic modifications of chromatin structure provide a mechanistic interface for gene–environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus. |
format | Online Article Text |
id | pubmed-4175498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-41754982015-10-01 Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan Spiegel, Amy M. Sewal, Angila S. Rapp, Peter R. Learn Mem Review Epigenetic modifications of chromatin structure provide a mechanistic interface for gene–environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus. Cold Spring Harbor Laboratory Press 2014-10 /pmc/articles/PMC4175498/ /pubmed/25227252 http://dx.doi.org/10.1101/lm.033506.113 Text en Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Review Spiegel, Amy M. Sewal, Angila S. Rapp, Peter R. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title | Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title_full | Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title_fullStr | Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title_full_unstemmed | Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title_short | Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
title_sort | epigenetic contributions to cognitive aging: disentangling mindspan and lifespan |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175498/ https://www.ncbi.nlm.nih.gov/pubmed/25227252 http://dx.doi.org/10.1101/lm.033506.113 |
work_keys_str_mv | AT spiegelamym epigeneticcontributionstocognitiveagingdisentanglingmindspanandlifespan AT sewalangilas epigeneticcontributionstocognitiveagingdisentanglingmindspanandlifespan AT rapppeterr epigeneticcontributionstocognitiveagingdisentanglingmindspanandlifespan |