Cargando…

Channel identification machines for multidimensional receptive fields

We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazar, Aurel A., Slutskiy, Yevgeniy B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176398/
https://www.ncbi.nlm.nih.gov/pubmed/25309413
http://dx.doi.org/10.3389/fncom.2014.00117
Descripción
Sumario:We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields.