Cargando…

Channel identification machines for multidimensional receptive fields

We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazar, Aurel A., Slutskiy, Yevgeniy B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176398/
https://www.ncbi.nlm.nih.gov/pubmed/25309413
http://dx.doi.org/10.3389/fncom.2014.00117
_version_ 1782336628075790336
author Lazar, Aurel A.
Slutskiy, Yevgeniy B.
author_facet Lazar, Aurel A.
Slutskiy, Yevgeniy B.
author_sort Lazar, Aurel A.
collection PubMed
description We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields.
format Online
Article
Text
id pubmed-4176398
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-41763982014-10-10 Channel identification machines for multidimensional receptive fields Lazar, Aurel A. Slutskiy, Yevgeniy B. Front Comput Neurosci Neuroscience We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields. Frontiers Media S.A. 2014-09-26 /pmc/articles/PMC4176398/ /pubmed/25309413 http://dx.doi.org/10.3389/fncom.2014.00117 Text en Copyright © 2014 Lazar and Slutskiy. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Lazar, Aurel A.
Slutskiy, Yevgeniy B.
Channel identification machines for multidimensional receptive fields
title Channel identification machines for multidimensional receptive fields
title_full Channel identification machines for multidimensional receptive fields
title_fullStr Channel identification machines for multidimensional receptive fields
title_full_unstemmed Channel identification machines for multidimensional receptive fields
title_short Channel identification machines for multidimensional receptive fields
title_sort channel identification machines for multidimensional receptive fields
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176398/
https://www.ncbi.nlm.nih.gov/pubmed/25309413
http://dx.doi.org/10.3389/fncom.2014.00117
work_keys_str_mv AT lazaraurela channelidentificationmachinesformultidimensionalreceptivefields
AT slutskiyyevgeniyb channelidentificationmachinesformultidimensionalreceptivefields