Cargando…
Channel identification machines for multidimensional receptive fields
We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under whic...
Autores principales: | Lazar, Aurel A., Slutskiy, Yevgeniy B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176398/ https://www.ncbi.nlm.nih.gov/pubmed/25309413 http://dx.doi.org/10.3389/fncom.2014.00117 |
Ejemplares similares
-
Channel Identification Machines
por: Lazar, Aurel A., et al.
Publicado: (2012) -
Estimating receptive fields and spike-processing neural circuits in Drosophila
por: Lazar, Aurel A, et al.
Publicado: (2012) -
Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations
por: Kim, Anmo J, et al.
Publicado: (2015) -
Identification of nonlinear-nonlinear neuron models and stimulus decoding
por: Lazar, Aurel A, et al.
Publicado: (2013) -
Functional identification and evaluation of massively parallel neural circuits
por: Lazar, Aurel A, et al.
Publicado: (2013)