Cargando…
Ferroelectric Sm-Doped BiMnO(3) Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K
[Image: see text] A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO(3) (BSMO) films on SrTiO(3) single crystal substrates, with enhanced magnetic transition temperatures, T(C) up to as high as 140 K...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176521/ https://www.ncbi.nlm.nih.gov/pubmed/25141031 http://dx.doi.org/10.1021/am501351c |
Sumario: | [Image: see text] A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO(3) (BSMO) films on SrTiO(3) single crystal substrates, with enhanced magnetic transition temperatures, T(C) up to as high as 140 K, 40 K higher than that for standard BiMnO(3) (BMO) films. Strong room temperature ferroelectricity with piezoresponse amplitude, d(33) = 10 pm/V, and long-term retention of polarization were also observed. Furthermore, the BSMO films were much easier to grow than pure BMO films, with excellent phase purity over a wide growth window. The work represents a very effective way to independently control strain in-plane and out-of-plane, which is important not just for BMO but for controlling the properties of many other strongly correlated oxides. |
---|