Cargando…
Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation
Pathogenic de novo mutations increase with fathers’ age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs). Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W), to provide...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176532/ https://www.ncbi.nlm.nih.gov/pubmed/25254335 http://dx.doi.org/10.1016/j.stemcr.2014.06.007 |
_version_ | 1782336648257732608 |
---|---|
author | Martin, Laura A. Assif, Nicholas Gilbert, Moses Wijewarnasuriya, Dinali Seandel, Marco |
author_facet | Martin, Laura A. Assif, Nicholas Gilbert, Moses Wijewarnasuriya, Dinali Seandel, Marco |
author_sort | Martin, Laura A. |
collection | PubMed |
description | Pathogenic de novo mutations increase with fathers’ age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs). Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W), to provide experimental evidence for SSC competition. The S252W allele conferred enhanced FGFR2-mediated signaling, particularly at very low concentrations of ligand, and also subtle changes in gene expression. Mutant SSCs exhibited improved competitiveness in vitro and increased stem cell activity in vivo upon transplantation. The fitness advantage in vitro only occurred in low concentrations of fibroblast growth factor (FGF), was independent of FGF-driven proliferation, and was accompanied by increased response to glial cell line-derived neurotrophic factor (GDNF). Our studies provide experimental evidence of enhanced stem cell fitness in SSCs bearing a paternal age-associated mutation. Our model will be useful for interrogating other candidate mutations in the future to reveal mechanisms of disease risk. |
format | Online Article Text |
id | pubmed-4176532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-41765322014-09-30 Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation Martin, Laura A. Assif, Nicholas Gilbert, Moses Wijewarnasuriya, Dinali Seandel, Marco Stem Cell Reports Report Pathogenic de novo mutations increase with fathers’ age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs). Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W), to provide experimental evidence for SSC competition. The S252W allele conferred enhanced FGFR2-mediated signaling, particularly at very low concentrations of ligand, and also subtle changes in gene expression. Mutant SSCs exhibited improved competitiveness in vitro and increased stem cell activity in vivo upon transplantation. The fitness advantage in vitro only occurred in low concentrations of fibroblast growth factor (FGF), was independent of FGF-driven proliferation, and was accompanied by increased response to glial cell line-derived neurotrophic factor (GDNF). Our studies provide experimental evidence of enhanced stem cell fitness in SSCs bearing a paternal age-associated mutation. Our model will be useful for interrogating other candidate mutations in the future to reveal mechanisms of disease risk. Elsevier 2014-07-17 /pmc/articles/PMC4176532/ /pubmed/25254335 http://dx.doi.org/10.1016/j.stemcr.2014.06.007 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Report Martin, Laura A. Assif, Nicholas Gilbert, Moses Wijewarnasuriya, Dinali Seandel, Marco Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title | Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title_full | Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title_fullStr | Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title_full_unstemmed | Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title_short | Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation |
title_sort | enhanced fitness of adult spermatogonial stem cells bearing a paternal age-associated fgfr2 mutation |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176532/ https://www.ncbi.nlm.nih.gov/pubmed/25254335 http://dx.doi.org/10.1016/j.stemcr.2014.06.007 |
work_keys_str_mv | AT martinlauraa enhancedfitnessofadultspermatogonialstemcellsbearingapaternalageassociatedfgfr2mutation AT assifnicholas enhancedfitnessofadultspermatogonialstemcellsbearingapaternalageassociatedfgfr2mutation AT gilbertmoses enhancedfitnessofadultspermatogonialstemcellsbearingapaternalageassociatedfgfr2mutation AT wijewarnasuriyadinali enhancedfitnessofadultspermatogonialstemcellsbearingapaternalageassociatedfgfr2mutation AT seandelmarco enhancedfitnessofadultspermatogonialstemcellsbearingapaternalageassociatedfgfr2mutation |