Cargando…

Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies

BACKGROUND: The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolormaa, Sunduimijid, Pryce, Jennie E, Kemper, Kathryn E, Hayes, Ben J, Zhang, Yuandan, Tier, Bruce, Barendse, William, Reverter, Antonio, Goddard, Mike E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176739/
https://www.ncbi.nlm.nih.gov/pubmed/24168700
http://dx.doi.org/10.1186/1297-9686-45-43
_version_ 1782336672336183296
author Bolormaa, Sunduimijid
Pryce, Jennie E
Kemper, Kathryn E
Hayes, Ben J
Zhang, Yuandan
Tier, Bruce
Barendse, William
Reverter, Antonio
Goddard, Mike E
author_facet Bolormaa, Sunduimijid
Pryce, Jennie E
Kemper, Kathryn E
Hayes, Ben J
Zhang, Yuandan
Tier, Bruce
Barendse, William
Reverter, Antonio
Goddard, Mike E
author_sort Bolormaa, Sunduimijid
collection PubMed
description BACKGROUND: The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. METHODS: Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. RESULTS: Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. CONCLUSIONS: The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight.
format Online
Article
Text
id pubmed-4176739
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41767392014-10-23 Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies Bolormaa, Sunduimijid Pryce, Jennie E Kemper, Kathryn E Hayes, Ben J Zhang, Yuandan Tier, Bruce Barendse, William Reverter, Antonio Goddard, Mike E Genet Sel Evol Research BACKGROUND: The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. METHODS: Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. RESULTS: Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. CONCLUSIONS: The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. BioMed Central 2013-10-29 /pmc/articles/PMC4176739/ /pubmed/24168700 http://dx.doi.org/10.1186/1297-9686-45-43 Text en Copyright © 2013 Bolormaa et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Bolormaa, Sunduimijid
Pryce, Jennie E
Kemper, Kathryn E
Hayes, Ben J
Zhang, Yuandan
Tier, Bruce
Barendse, William
Reverter, Antonio
Goddard, Mike E
Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title_full Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title_fullStr Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title_full_unstemmed Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title_short Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies
title_sort detection of quantitative trait loci in bos indicus and bos taurus cattle using genome-wide association studies
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176739/
https://www.ncbi.nlm.nih.gov/pubmed/24168700
http://dx.doi.org/10.1186/1297-9686-45-43
work_keys_str_mv AT bolormaasunduimijid detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT prycejenniee detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT kemperkathryne detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT hayesbenj detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT zhangyuandan detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT tierbruce detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT barendsewilliam detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT reverterantonio detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies
AT goddardmikee detectionofquantitativetraitlociinbosindicusandbostauruscattleusinggenomewideassociationstudies