Cargando…

Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection

Virus infection triggers a CD8(+) T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8(+) T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well under...

Descripción completa

Detalles Bibliográficos
Autores principales: Ely, Kenneth H., Matsuoka, Mitsuo, DeBerge, Matthew P., Ruby, Jessica A., Liu, Jun, Schneider, Mark J., Wang, Yan, Hahn, Young S., Enelow, Richard I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177548/
https://www.ncbi.nlm.nih.gov/pubmed/25251060
http://dx.doi.org/10.1371/journal.pone.0108385
_version_ 1782336780468486144
author Ely, Kenneth H.
Matsuoka, Mitsuo
DeBerge, Matthew P.
Ruby, Jessica A.
Liu, Jun
Schneider, Mark J.
Wang, Yan
Hahn, Young S.
Enelow, Richard I.
author_facet Ely, Kenneth H.
Matsuoka, Mitsuo
DeBerge, Matthew P.
Ruby, Jessica A.
Liu, Jun
Schneider, Mark J.
Wang, Yan
Hahn, Young S.
Enelow, Richard I.
author_sort Ely, Kenneth H.
collection PubMed
description Virus infection triggers a CD8(+) T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8(+) T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well understood. The ligand for the inhibitory receptor, NKG2A, is the non-classical MHC-I molecule Qa1(b), which may also serve as a putative restricting element for the T cell receptors of purported regulatory CD8(+) T cells. We have previously shown that Qa1(b)-null mice suffer considerably enhanced immunopathologic lung injury in the context of CD8(+) T cell-mediated clearance of influenza infection, as well as evidence in a non-viral system that failure to ligate NKG2A on CD8(+) effector T cells may represent an important component of this process. In this report, we examine the requirements for induction of NKG2A expression, and show that NKG2A expression by CD8(+) T cells occurs as a result of migration from the MLN to the inflammatory lung environment, irrespective of peripheral antigen recognition. Further, we confirmed that NKG2A is a mediator in limiting immunopathology in virus infection using mice with a targeted deletion of NKG2A, and infecting the mutants with two different viruses, influenza and adenovirus. In neither infection is virus clearance altered. In influenza infection, the enhanced lung injury was associated with increased chemoattractant production, increased infiltration of inflammatory cells, and significantly enhanced alveolar hemorrhage. The primary mechanism of enhanced injury was the loss of negative regulation of CD8(+) T cell effector function. A similar effect was observed in the livers of mutant mice infected intravenously with adenovirus. These results demonstrate the immunoregulatory role of CD8(+) NKG2A expression in virus infection, which negatively regulates T cell effector functions and contributes to protection of tissue integrity during virus clearance.
format Online
Article
Text
id pubmed-4177548
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41775482014-10-02 Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection Ely, Kenneth H. Matsuoka, Mitsuo DeBerge, Matthew P. Ruby, Jessica A. Liu, Jun Schneider, Mark J. Wang, Yan Hahn, Young S. Enelow, Richard I. PLoS One Research Article Virus infection triggers a CD8(+) T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8(+) T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well understood. The ligand for the inhibitory receptor, NKG2A, is the non-classical MHC-I molecule Qa1(b), which may also serve as a putative restricting element for the T cell receptors of purported regulatory CD8(+) T cells. We have previously shown that Qa1(b)-null mice suffer considerably enhanced immunopathologic lung injury in the context of CD8(+) T cell-mediated clearance of influenza infection, as well as evidence in a non-viral system that failure to ligate NKG2A on CD8(+) effector T cells may represent an important component of this process. In this report, we examine the requirements for induction of NKG2A expression, and show that NKG2A expression by CD8(+) T cells occurs as a result of migration from the MLN to the inflammatory lung environment, irrespective of peripheral antigen recognition. Further, we confirmed that NKG2A is a mediator in limiting immunopathology in virus infection using mice with a targeted deletion of NKG2A, and infecting the mutants with two different viruses, influenza and adenovirus. In neither infection is virus clearance altered. In influenza infection, the enhanced lung injury was associated with increased chemoattractant production, increased infiltration of inflammatory cells, and significantly enhanced alveolar hemorrhage. The primary mechanism of enhanced injury was the loss of negative regulation of CD8(+) T cell effector function. A similar effect was observed in the livers of mutant mice infected intravenously with adenovirus. These results demonstrate the immunoregulatory role of CD8(+) NKG2A expression in virus infection, which negatively regulates T cell effector functions and contributes to protection of tissue integrity during virus clearance. Public Library of Science 2014-09-24 /pmc/articles/PMC4177548/ /pubmed/25251060 http://dx.doi.org/10.1371/journal.pone.0108385 Text en © 2014 Ely et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ely, Kenneth H.
Matsuoka, Mitsuo
DeBerge, Matthew P.
Ruby, Jessica A.
Liu, Jun
Schneider, Mark J.
Wang, Yan
Hahn, Young S.
Enelow, Richard I.
Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title_full Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title_fullStr Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title_full_unstemmed Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title_short Tissue-Protective Effects of NKG2A in Immune-Mediated Clearance of Virus Infection
title_sort tissue-protective effects of nkg2a in immune-mediated clearance of virus infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177548/
https://www.ncbi.nlm.nih.gov/pubmed/25251060
http://dx.doi.org/10.1371/journal.pone.0108385
work_keys_str_mv AT elykennethh tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT matsuokamitsuo tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT debergematthewp tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT rubyjessicaa tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT liujun tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT schneidermarkj tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT wangyan tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT hahnyoungs tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection
AT enelowrichardi tissueprotectiveeffectsofnkg2ainimmunemediatedclearanceofvirusinfection