Cargando…
Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticogr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177663/ https://www.ncbi.nlm.nih.gov/pubmed/25255217 http://dx.doi.org/10.1371/journal.pcbi.1003855 |
_version_ | 1782336808161378304 |
---|---|
author | Mak-McCully, Rachel A. Deiss, Stephen R. Rosen, Burke Q. Jung, Ki-Young Sejnowski, Terrence J. Bastuji, Hélène Rey, Marc Cash, Sydney S. Bazhenov, Maxim Halgren, Eric |
author_facet | Mak-McCully, Rachel A. Deiss, Stephen R. Rosen, Burke Q. Jung, Ki-Young Sejnowski, Terrence J. Bastuji, Hélène Rey, Marc Cash, Sydney S. Bazhenov, Maxim Halgren, Eric |
author_sort | Mak-McCully, Rachel A. |
collection | PubMed |
description | Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca(2+) current (I(T)). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise. |
format | Online Article Text |
id | pubmed-4177663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41776632014-10-02 Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling Mak-McCully, Rachel A. Deiss, Stephen R. Rosen, Burke Q. Jung, Ki-Young Sejnowski, Terrence J. Bastuji, Hélène Rey, Marc Cash, Sydney S. Bazhenov, Maxim Halgren, Eric PLoS Comput Biol Research Article Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca(2+) current (I(T)). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise. Public Library of Science 2014-09-25 /pmc/articles/PMC4177663/ /pubmed/25255217 http://dx.doi.org/10.1371/journal.pcbi.1003855 Text en © 2014 Mak-McCully et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mak-McCully, Rachel A. Deiss, Stephen R. Rosen, Burke Q. Jung, Ki-Young Sejnowski, Terrence J. Bastuji, Hélène Rey, Marc Cash, Sydney S. Bazhenov, Maxim Halgren, Eric Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title_full | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title_fullStr | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title_full_unstemmed | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title_short | Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling |
title_sort | synchronization of isolated downstates (k-complexes) may be caused by cortically-induced disruption of thalamic spindling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177663/ https://www.ncbi.nlm.nih.gov/pubmed/25255217 http://dx.doi.org/10.1371/journal.pcbi.1003855 |
work_keys_str_mv | AT makmccullyrachela synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT deissstephenr synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT rosenburkeq synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT jungkiyoung synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT sejnowskiterrencej synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT bastujihelene synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT reymarc synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT cashsydneys synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT bazhenovmaxim synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling AT halgreneric synchronizationofisolateddownstateskcomplexesmaybecausedbycorticallyinduceddisruptionofthalamicspindling |