Cargando…

Altered Mitochondrial Function and Oxidative Stress in Leukocytes of Anorexia Nervosa Patients

CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control...

Descripción completa

Detalles Bibliográficos
Autores principales: Victor, Victor M., Rovira-Llopis, Susana, Saiz-Alarcon, Vanessa, Sangüesa, Maria C., Rojo-Bofill, Luis, Bañuls, Celia, Falcón, Rosa, Castelló, Raquel, Rojo, Luis, Rocha, Milagros, Hernández-Mijares, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177818/
https://www.ncbi.nlm.nih.gov/pubmed/25254642
http://dx.doi.org/10.1371/journal.pone.0106463
Descripción
Sumario:CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O(2) consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.