Cargando…

Osteoprotegerin, Pericytes and Bone-Like Vascular Calcification Are Associated with Carotid Plaque Stability

BACKGROUND AND PURPOSE: Vascular calcification, recapitulating bone formation, has a profound impact on plaque stability. The aim of the present study was to determine the influence of bone-like vascular calcification (named osteoid metaplasia = OM) and of osteoprotegerin on plaque stability. METHOD...

Descripción completa

Detalles Bibliográficos
Autores principales: Davaine, Jean-Michel, Quillard, Thibaut, Brion, Régis, Lapérine, Olivier, Guyomarch, Béatrice, Merlini, Thierry, Chatelais, Mathias, Guilbaud, Florian, Brennan, Meadhbh Áine, Charrier, Céline, Heymann, Dominique, Gouëffic, Yann, Heymann, Marie-Françoise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178031/
https://www.ncbi.nlm.nih.gov/pubmed/25259713
http://dx.doi.org/10.1371/journal.pone.0107642
Descripción
Sumario:BACKGROUND AND PURPOSE: Vascular calcification, recapitulating bone formation, has a profound impact on plaque stability. The aim of the present study was to determine the influence of bone-like vascular calcification (named osteoid metaplasia = OM) and of osteoprotegerin on plaque stability. METHODS: Tissue from carotid endarterectomies were analysed for the presence of calcification and signs of vulnerability according to AHA grading system. Osteoprotegerin (OPG), pericytes and endothelial cells were sought using immuno-histochemistry. Symptoms and preoperative imaging findings (CT-scan, MRI and Doppler-scan) were analyzed. Human pericytes were cultured to evaluate their ability to secrete OPG and to influence mineralization in the plaque. RESULTS: Seventy-three carotid plaques (49 asymptomatic and 24 symptomatic) were harvested. A significantly higher presence of OM (18.4% vs 0%, p<0.01), OPG (10.2% of ROI vs 3.4% of ROI, p<0.05) and pericytes (19% of ROI vs 3.8% of ROI, p<0.05) were noted in asymptomatic compared to symptomatic plaques. Consistently, circulating OPG levels were higher in the plasma of asymptomatic patients (3.2 ng/mL vs 2.5 ng/mL, p = 0.05). In vitro, human vascular pericytes secreted considerable amounts of OPG and underwent osteoblastic differentiation. Pericytes also inhibited the osteoclastic differentiation of CD14+ cells through their secretion of OPG. CONCLUSIONS: OPG (intraplaque an plasmatic) and OM are associated with carotid plaque stability. Pericytes may be involved in the secretion of intraplaque OPG and in the formation of OM.