Cargando…
Task-dependent reorganization of functional connectivity networks during visual semantic decision making
INTRODUCTION: Functional MRI is widely used to study task-related changes in neuronal activity as well as resting-state functional connectivity. In this study, we explore task-related changes in functional connectivity networks using fMRI. Dynamic connectivity may represent a new measure of neural n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178300/ https://www.ncbi.nlm.nih.gov/pubmed/25365802 http://dx.doi.org/10.1002/brb3.286 |
Sumario: | INTRODUCTION: Functional MRI is widely used to study task-related changes in neuronal activity as well as resting-state functional connectivity. In this study, we explore task-related changes in functional connectivity networks using fMRI. Dynamic connectivity may represent a new measure of neural network robustness that would impact both clinical and research efforts. However, prior studies of task-related changes in functional connectivity have shown apparently conflicting results, leading to several competing hypotheses regarding the relationship between task-related and resting-state brain networks. METHODS: We used a graph theory-based network approach to compare functional connectivity in healthy subjects between the resting state and when performing a clinically used semantic decision task. We analyzed fMRI data from 21 healthy, right-handed subjects. RESULTS: While three nonoverlapping, highly intraconnected functional modules were observed in the resting state, an additional language-related module emerged during the semantic decision task. Both overall and within-module connectivity were greater in default mode network (DMN) and classical language areas during semantic decision making compared to rest, while between-module connectivity was diffusely greater at rest, revealing a more widely distributed pattern of functional connectivity at rest. CONCLUSIONS: The results of this study suggest that there are differences in network topology between resting and task states. Specifically, semantic decision making is associated with a reduction in distributed connectivity through hub areas of the DMN as well as an increase in connectivity within both default and language networks. |
---|